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Flow-induced vibration in a collapsible tube is relevant to many biomedical applications
including the human respiratory system. This paper presents a linear analysis of the coupling
between Poiseuille #ow and a tensioned membrane of "nite length using an eigenvalue
approach. The undisturbed state of the channel #ow is perfectly parallel. To some extent, this
con"guration bridges the gap between two types of theoretical models: one for the travelling-
wave #utter in an in"nite, #exible channel, and the other for the self-induced oscillation of
a collapsing section of a Starling-resistor tube. In our study, we focus on the parameter range
where the wall-to-#uid mass ratio is high (100), and the Reynolds number based on the
maximum #ow velocity in the channel is moderately high (200). Eigenmodes representing both
static divergence and #utter are found. Particular attention is paid to the energetics of #utter
modes. It is shown that energy transfer from the #ow to the membrane occurs as a result of
unstable, downstream-travelling waves, while the upstream-travelling waves are stable and
release most of the transferred energy back to the #ow. Coupling between di!erent in vacuo
modes o!ers another view of the origin of energy transfer. In addition, an energy conservation
analysis similar to the one used in aeroacoustics is carried out. It is shown that terms directly
proportional to #uid viscosity contribute most to the production of #uctuation energy, leading
to a special type of dynamic instability which resembles both Tollmien}Schlichting instability
in the sense that the #uid viscosity destabilises, and traditional travelling wave #utter since the
structural damping plays the role of stabilising. E!ects of the membrane mass, length and
structural damping are also studied. The characteristics of the membrane #utter are found to
depend crucially on the upstream and downstream boundary conditions.
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1. INTRODUCTION

STUDIES OF FLOW THROUGH COLLAPSIBLE TUBES are relevant to many physiological phenomena
of blood circulation and respiration. Virtually, all #uid-carrying vessels in the human body
are elastic and collapsible (Caro et al. 1978), so are the bronchial airways (Grotberg 1994).
Human snoring (Huang et al. 1995) and wheezing (Gavriely et al. 1989) are two examples of
human airway oscillation. Although some e!ort is made in the present study to relate the
controlling parameters to physiological phenomena, the main motivation is theoretical
clari"cation of the #utter mechanism. The remainder of this section summarises three
aspects of theoretical development in the studies of #ow through collapsible tubes and two-
dimensional #exible channels: (i) earlier potential #ow models, (ii) the separated #ow/vortex
wave models, and (iii) travelling-wave #utter in in"nite channels. Whilst most theories focus
on a certain range of parameters, most notably the structure-to-#uid mass ratio, our
summary is only concerned with the general conclusions instead of parametric variations.
The summary is also restricted to two-dimensional channel con"gurations.
0889}9746/01/071061#28 $35.00/0 ( 2001 Academic Press
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Earlier theoretical studies, e.g. by Shapiro (1977), began with a one-dimensional model of
uniform #ow in an elastic tube whose deformation was assumed to follow a tube-law
relating the cross-sectional area with the transmural pressure (external minus internal). The
tube law was a local function which did not contain any time variable. Matsuzaki & Fung
(1977, 1979) considered two-dimensional models in which the #exible wall had a "nite
length, but the #ow was again assumed to be a potential #ow. Divergence was invariably
predicted, and it was the only instability when structural damping was included. Wall
oscillations were predicted by nonlinear `extrapolationa of the collapse and were sometimes
referred to as `#uttera. Models of this kind did capture the essence of #exible tube collapse.
However, laboratory experiments and physiological evidence all suggested that a collapsing
tube experienced oscillations of various types. Obviously, most structural oscillations
started with small amplitudes which grew in time, and this required the transfer of energy
from the #ow to the structural vibration which presumably had to overcome certain
structural damping. The search was on to "nd the mechanism for this energy transfer.
Before we go on to describe the brief history of research in this area, it is necessary to clarify
some terminology. In mechanics, we often refer to the event of tube collapse (or in#ation) as
a static instability or simply divergence. Similarly, we call oscillations that follow the
collapse a dynamic instability or #utter. But the use of the word `#uttera has not been
consistent in the literature. In our study, we choose to de"ne #utter as a self-induced
structural vibration caused by linear disturbances. Mathematically, #utter here is simply
de"ned as an eigenmode with a "nite frequency. It di!ers from the so-called post-divergence
#utter (or #apping mode oscillation) as described by Weaver & PamKdoussis (1977). The latter
is a nonlinear manifestation of the tube collapse, i.e. a limit cycle oscillation. Some of these
oscillations were also recently simulated by Luo & Pedley (1996, 1998) using a computa-
tional model quite similar to the one used in the present study. But it must be emphasized
that the oscillations predicted in their studies have di!erent features. They involve vortex
shedding, which might be the driving force behind the instability at the late stage of
a certainly nonlinear process. Flow-induced oscillations of this type are beyond the scope of
our de"nition of linear #utter in a parallel #ow, despite the fact that the two studies may
contribute to the understanding of di!erent aspects of essentially the same physiological
phenomena.

We now describe experimental "ndings starting with the experiment of Weaver
& PamKdoussis (1977). Travelling waves were also observed downstream of the site of
collapse, but they were believed to be initiated by divergence. The air #ow was blown
through a silicone rubber tube which was pre-#attened. The internal pressure was higher
than the external pressure, contrasting with more typical experiments of collapsible-tube
#ow in which the external pressure was higher. The latter is commonly known as a Starling
resistor, see e.g. Conrad (1969) and Bertram et al. (1990). In such a device, a segment of
rubber tube is clamped at its up- and downstream ends and surrounded by a pressure
chamber which controls the transmural pressure. Due to friction, the #ow at the down-
stream end of the tube has the lowest pressure and, at a certain volume #ow rate, the tube
"rst buckles near the downstream clamp, forming a `necka. Further decrease in the
downstream pressure accelerates the #ow but narrows the neck, and a point is reached
when the volume #ow rate attains its peak value. Upon further increase in the driving
pressure, oscillations of several distinct frequencies, as well as random vibrations, may
follow. The experiments by Bertram and his colleagues were the most systematic, [e.g.,
Bertram et al. (1990), Bertram & Godbole (1997) and Bertram & Castles (1999)], and a brief
review was given by Kamm & Pedley (1989). Most experiments were carried out using
water as the #uid medium, but a few using air were also reported, e.g. by Gavriely et al.
(1989) for wheezing, and in a simple rig by Huang et al. (1995) for pharyngeal snoring.



VISCOUS FLUTTER OF MEMBRANE 1063
Presumably, the essence of some of these oscillation phenomena is nonlinear, and one of
the main features is the unsteady #ow separation and vortex shedding downstream of the
oscillating wall constriction. Pedley and his colleagues have persistently pursued this line of
modelling, which ranged from the vortex wave (Pedley & Stephano! 1985), the lumped
parameter modelling of the coupling of the #ow separation and wall motion (Cancelli
& Pedley 1985; Jensen 1990), to the more recent two-dimensional numerical simulation of
the true mechanics of #uid}structure interactions (Luo & Pedley 1996, 1998). The latter
dealt with large amplitude, self-excited oscillations, and demonstrated the phase di!erence
between the wall displacement and wall pressure, a necessary ingredient for #uid-wall energy
transfer. Similar simulations were also developed by Pedrizzetti (1998) and Tang et al. (1999)
for slightly di!erent con"gurations. With further development along this line, we can expect
further insight into the physics of such energy transfer, and the e!orts in this area may
eventually merge with those in the area of vortex-shedding-induced vibration of cylinders and
other cross-#ow applications. However, the intricacy of the collapsible-tube #ow has already
attracted the attention of those studying the engineering problem of drag reduction and the
delay of laminar #ow transition (Davies & Carpenter 1997b). The results of these studies are
brie#y summarised below in the general framework of linear #utter with parallel #ows.

In a quite separate line of pursuit, most notably by Grotberg and his colleagues, the
search on the mechanism of #uid-wall energy transfer has been focused on the con"guration
of an in"nitely long, parallel-sided channel whose undisturbed #ow state is unidirectional.
The mathematical appeal of a simple travelling-wave instability has certainly played a part
in the development of such theoretical models. This model also has the potential to explain
elegantly the phenomena of #ow limitation in a way similar to the choking of compressible
#ow through a contraction}expansion nozzle. Attempts were made by LaRose & Grotberg
(1997) to compare the results of a travelling-wave theory with oscillations measured in
a Starling-resistor experiment. It is clear that a more satisfactory comparison must be made
with a deliberate laboratory model in which the undisturbed state is free of unsteady #ow
separation. So far, there has been no serious attempt to create such a laboratory experiment,
except, perhaps, that by Kececioglu et al. (1981) in which gravity was used to balance out the
internal pressure gradient of water #ow through the #exible tube. If similar measures are
taken in a Starling resistor, one might be able to achieve a uniform transmural pressure
along the tube. One of the "rst theoretical models for #utter came as an ad hoc Darcy
friction term representing the e!ect of viscosity (Grotberg & Reiss 1984). Flutter was
predicted and the approximate theory was later shown to be consistent with results from the
full Orr}Sommerfeld system when #uid viscosity and structural damping were taken to zero
simultaneously with the ratio of O(1) (Grotberg & Shee 1985). This model was recently
upgraded by the solution for the full Orr}Sommerfeld system (LaRose & Grotberg 1997),
and #utter was again predicted. The base #ow chosen was a developing #ow, a natural
development of its predecessor which was a plug #ow with Darcy-friction correction; but it
is interesting to note that the physical intuition demonstrated in the Darcy friction model
bears some resemblance to the physics shown in the present model which demonstrates that
#uid viscosity plays an essential role in bringing about #utter of the "nite-length membrane.

In a parallel development due to Davies & Carpenter (1997b), whose main motivation
was to delay the laminar #ow transition and reduce drag, the Orr}Sommerfeld equation
was solved numerically for the Poiseuille #ow to show what they called the travelling-wave
#utter on the #exible channel walls. Modes in which the two walls moved in step (antisym-
metrical in vibration velocity) were also considered and were found to be less critical than
their symmetrical counterparts. Davies and Carpenter went further, to show that the
Tollmien}Schlichting instability (TSI) could interact with the travelling-wave #utter, and
that they might merge under certain conditions. However, it is generally agreed that TSI,
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which behaves in a way opposite to the travelling-wave #utter with respect to the e!ect of
structural damping, is not seen as relevant in the physiological context. The relevant
features of TSI are: (a) TSI primarily occurs over rigid walls and in antisymmetric mode,
and can be delayed by the wall compliance, and (b) TSI is destabilised by wall damping. For
a more thorough discussion of TSI and its interaction with other instabilities, including
travelling-wave #utter and Kelvin}Helmholtz instability, the reader is referred to the work
of Carpenter & Garrad (1986) and a more recent work by Davies & Carpenter (1997a) in
a geometric con"guration quite similar to what we consider here. Again, it is interesting to
note that the viscous #utter shown in the present model appears to di!er from both TSI and
travelling-wave #utter in the studies of Davies and Carpenter in terms of the role played by
#uid viscosity and wall damping.

In yet another parallel development, due to the present author (Huang 1998), a Poiseuille
#ow model was also adopted, but attention was focused on the inviscid shear #ow e!ect for
which the Orr}Sommerfeld equation was reduced to the Rayleigh equation. Flutter was
also found, together with a special phenomenon of the reversal of the collapsing tendency
associated with the Bernoulli e!ect for potential #ows. Note that the Bernoulli e!ect
dominates the mechanics of all earlier models which predict only static divergence in the
linear framework. Dealing with a much simpler mathematical model, we were able to
present a more complete picture of the physics involved. The mechanism of the #uid-wall
energy transfer was identi"ed with Miles' (1957) theory of water wave generation by
shearing wind with vorticity gradient, and the reversal of the Bernoulli e!ect was found to
be a channel-wall ampli"cation of the Miles mechanism. It was also shown that the pressure
developed a component in phase with the wave slope when the surface wave was slower
than the maximum #ow speed in the shear #ow pro"le. This condition is related to the
existence of the so-called critical layer and was shown by Lord Kelvin to induce a `cat's-
eyea vortex pattern when viewed from the travelling surface wave. Our conclusion that the
#utter mechanism was essentially a shear #ow phenomenon was in perfect agreement with
the full Orr}Sommerfeld solution of Davies & Carpenter (1997b), who went on to state that
even TSI behaved as an inviscid instability when it interacted and merged with the
travelling-wave #utter.

Part of the motivation for the current study is to test the following conjecture. If Miles'
mechanism of wave drag, hence #uid-wall energy transfer, is robust, #utter should also
occur on a "nite membrane which experiences travelling surface waves in both directions. In
contrast to the conclusions reached in the inviscid #ow model, it turns out that the similar
shear-#ow terms are overshadowed by the viscous terms in the current model of viscous
#ow over a "nite-length membrane, and the viscous #utter mechanism is more closely
related to the velocity gradient instead of the vorticity gradient as was the case for the
shear-#ow #utter. In what follows, the linearized Navier}Stokes equations are solved
numerically, and it is found that #utter exists alongside divergence. The nature of the
numerical calculation leads us to consider a model of "nite length for the duct upstream and
downstream of the membrane. Two typical sets of boundary conditions are used, and they
simulate, respectively, blowing and suction #ows through a "nite channel with an elastic
insertion. It is shown that the changes of these boundary conditions have drastic e!ects on
the transient #ow characteristics, leading to a totally di!erent form of eigenvibration.

2. THEORY
2.1. THEORETICAL MODEL

We consider a two-dimensional channel of height hH, through which a #uid of density
oH #ows with a Poiseuille velocity distribution with maximum velocity at the centre, ;H

.!9
.



Figure 1. The model con"guration.
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Here hH, oH,;H
.!9

are chosen as the length, density and velocity scales for normalisation.
The time scale is hH/;H

.!9
and the pressure or stress scale is oH;*2

.!9
. Symbols without

asterisks denote dimensionless variables. So, the dimensionless height is h"1, and the
dimensionless velocity distribution is ;(y)"1!4y2. As shown in Figure 1 with dimen-
sionless labels, the upper rigid wall lies at y"0)5, while the lower wall incorporating the
elastic membrane is located at y"!0)5. The membrane has a length of ¸, and is subject to
tensile stress. Bending sti!ness and elastic support could also be included, but it is felt that
the underlying physics is partly shared by that of the tensile force. However, in the
long-wave limit, the e!ect of an elastic foundation di!ers from that of tensile and bending
forces. It would be interesting to investigate the relationship between this model and some
traditional tube-law models, but this is excluded in the present studies partly because of the
large number of controlling parameters. As a result, long-wave static divergence instability
does not appear in the current model. The upstream and downstream length of the channel
are ¸

u
and ¸

d
, respectively. The velocity pro"le at the channel entrance is assumed to be

fully developed, and the use of ¸
u

and ¸
d

is solely associated with the speci"cation of
boundary conditions for the #ow perturbation. When there is no perturbation, steady
Poiseuille #ow inside the tube creates a pressure gradient which tends to collapse the
membrane if the external pressure is a constant. For simplicity, we assume an external
pressure distribution identical to the internal pressure associated with the steady #ow. Such
an external pressure distribution is unrealistic, but the assumption is purposefully made to
examine whether a nominally #at membrane can also experience #utter in a way a buckled
tube does. The task now is to "nd the critical #ow speed for the membrane to begin to
collapse or experience #ow-induced oscillation, and the characteristics of any such eigenvib-
rations.

The linear dynamics of the tensioned membrane is governed by

m
L2g
Lt2

#D
Lg
Lt

!¹

L2g
Lx2

#p
1
"0, (1)

where g is the membrane displacement, m,D and ¹ are the dimensionless membrane mass
per unit length, damping coe$cient, and the uniform tension, de"ned as follows:

m"

mH

oHhH
, D"

DH

oH;H
.!9

, ¹"

¹H

oH;*2
.!9

hH
, (2)

while p
1

is the normalised #uid normal stress which will be related to the membrane
displacement g through the #uid-dynamics model. Note that, in general, D is a function of
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vibration frequency, whose dimensionless version u is de"ned as

u"uHhH/;H
.!9

, (3)

as well as many other properties in a tensioned membrane. The issue of damping on
a tensioned membrane is a complicated one (Berry 1992). Nevertheless, the simple concept
of a constant loss factor p will be adopted here; p is the ratio of energy damping per radian
to the maximum potential energy, and is related to D by the following expression:

p"D/mu.

The damping term, D(Lg/Lt), in equation (1) will be absorbed into the inertia term to form
a complex inertia term, m (1!ip)L2g/Lt2, for harmonic vibrations of time dependency e*ut ;
p will be referred to as either a loss factor, or simply damping in a later discussion. Equation
(1) will then be solved by the standard Galerkin method to "nd the eigen frequency, u.

For the #uid part, incompressible #ow is assumed, and the Navier}Stokes equation is

D

Dt
V#$p"k+2V, k"

kH
oH;H

.!9
hH

, (4)

where V is the full #ow velocity (normalised by ;H
.!9

) and p is the full pressure (normalised
by oH;*2

.!9
), k is the dimensionless #uid viscosity, or the inverse of Reynolds number based

on;H
.!9

and the channel height hH. This equation is linearised by the following expressions:

V"M;(y)#u, vN, p"p
0
(x)#p@,

where u, v are the components of #ow perturbation velocity in the x and y directions,
respectively, and p

0
(x) is the pressure gradient created by the viscous friction of the steady

#ow,

Lp
0
/Lx"k;A(y).

p@ is the pressure perturbation, but the #uid loading on the membrane is the total normal
stress denoted as p

1
,

p
1
"Cp@!2k

Lv

LyD
.%."3!/%

, (5)

to be evaluated on the membrane surface. The "nal linear set of equations, including the
mass conservation equation, become

Lu

Lt
#;

Lu

Lx
#v

d;

dy
#

Lp@
Lx

!k+2u"0,

Lv

Lt
#;

Lv

Lx
#

Lp@
Ly

!k+2v"0,

Lu

Lx
#

Lv

Ly
"0.

(6)

The three linear perturbation quantities, u, v and p@, vanish when there is no wall
vibration. The time derivative, L/Lt, is replaced by iu in a harmonic oscillation problem. The
no-slip condition, u"v"0, is imposed on all rigid walls. At the inlet, x"!¸

u
, the

volume #ow rate is "xed, hence zero perturbation, u"0. It will be shown later that ¸
u
has

little e!ect on the results when this boundary condition is imposed. This condition is used
together with v"0 in viscous #ow where most perturbations on v are expected to decay to
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a minimal level at the upstream station. At the downstream, p@"0 is speci"ed to simulate
an open end to the atmosphere. In fact, in situations like inspiratory #ow into the lungs,
constant downstream #ow drafting, u"v"0, is more appropriate, while the upstream
pressure remains relatively constant, p@"0. If the former is designated as a `blowinga #ow
condition, the latter may be called the `suctiona #ow condition. The e!ect of the change of
up- and downstream boundary conditions is discussed later. On the membrane surface,
where the mean #ow vanishes, ;"0, the no-slip condition should also be imposed, which
means

v
y/~0>5`g+v

y/~0>5
"

Lg
Lt

"iug, (u#;)
y/~0>5`g"u

y/~0>5
#g;@(!0)5)"0.

Note that, on the nominal wall position, y"!0)5, the axial velocity perturbation u does
not vanish. The linear computation is then conducted in a rectangular domain without the
complication of moving boundaries required in nonlinear calculations.

Strictly speaking, the membrane tension varies axially due to the viscous shear stress
acting on the membrane. The ratio of the total shear stress acting on the membrane to the
tension applied is found to be

kH[L;H/LyH]
y
H/~h

H@2
¸H

¹H
"4k¸/¹.

As long as this ratio is low, the axial variation of membrane tension can be ignored. As will
be shown later, 4k¸/¹ has the value of 0)22 when #utter is predicted for the `defaulta set of
parameters used in the present paper (see Section 3.1). The ratio can be higher or lower
when the controlling parameters vary. Nevertheless, the e!ect of the axial tension variation
is not included in the present study, partly because of the large number of controlling
parameters.

2.2. METHOD OF SOLUTION

The standard Galerkin approach is followed to solve the eigenvalue problem. The mem-
brane displacement is decomposed into in vacuo modes:

g"e*ut
=
+
n/1

A
n
sin(nnx/¸), (7)

where A
n
is the modal amplitude. The #uid loading is related to these modal amplitudes by

calculating the loading caused by individual modal vibration of unit amplitude,

p
1
"

=
+
n/1

p
1
D
.0$%n

A
n
,

in which the subscript `mode na denotes the nth mode vibration of unit amplitude. The
complete #uid loading is also sine-transformed to form a modal coe$cient matrix of #uid
loading, MP

jn
N, in which the element P

jn
represents the jth modal coe$cient of #uid loading

generated by the vibration of the nth in vacuo mode of unit amplitude, and is calculated by

P
jn
"

2

¸ P
L

0

p
1
D
.0$%n

sin( jnx/¸) dx. (8)

The "nite-element software package FEMLAB', which is the extended version of the
Partial Di!erential Equation Toolbox of the popular computing language MATLAB', is
used to solve the linearised Navier}Stokes problem. The technique of streamwise di!usion
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is required to stabilise the solution, despite the fact that the two momentum equations come
with viscosity. The error caused by the application of the arti"cial viscosity tends to zero
when the mesh size vanishes. Numerical tests on energy conservation and other relation-
ships (to be discussed later) show that a mesh size smaller than about 0)0025 near
boundaries and 0)05 at the channel centre gives satisfactory results.

Combining equations (1), (7) and (8), we get

P
j
A

j
#+

n

P
jn
A

n
"0, j"1, 2, 3,2, N,

P
j
"mu2 (!1#ip)#¹( jn/¸)2,

(9)

where summation of j is not applied on the "rst term of the equation, %
j
A

j
, N is the order of

modal truncation. It will be shown later that N"10 su$ces for the range of parameters
considered in the present study. The eigenequation becomes

Q"det (MPN#diagMPN)"0, (10)

where MPN means the modal coe$cient matrix of #uid loading whose element is de"ned by
equation (8), diagMPN means the diagonal matrix formed by the vector with the structural
property P

j
de"ned in equation (9).

The eigenvibration amplitudes A
j
can be found once the eigenfrequency u is known. The

key issue now is the #uid loading matrix MPN which is a function of three geometrical
parameters (¸

u
,¸

d
,¸), two membrane property parameters (m, p), and two other controlling

parameters (k,¹ ). The #uid viscosity k is essentially the inverse of the Reynolds number,
and it is more intuitive to refer to this controlling parameter as the #ow speed. Assuming
that we know the "rst "ve parameters, the stability problem is posed as follows. For a given
tension ¹, "nd the minimum #ow speed so that the eigenvibration is neutrally stable,
namely when the eigenfrequency u is purely real. Since Q in the eigenequation (10) is
a highly nonlinear function of two variables, u and k, a reliable solution method would be
a two-dimensional scan over a vast region of the two-variable space (u, k). Contour curves
ofRe[Q(u, k)]"0 andIm[Q(u, k)]"0 can be found by the MATLAB' code `contourca.
The interception points of the two sets of contour curves are the solutions to the eigenequa-
tion Q"0, and the eigensolution with the lowest #ow speed (or highest k) is identi"ed as the
critical speed beyond which instability occurs. However, this process involves too many
calls to the FEMLAB' routine to "nd the #uid loading matrix MPN. An alternative
procedure is introduced whereby the #ow speed is "xed via specifying k, but the membrane
tension ¹ varies. In this case, the number of calls to the FEMLAB' routine is determined
by the number of scans over one independent variable, u, as the #uid loading caused by the
vibration of speci"ed in vacuo modes is independent of the tensile force on the membrane.
Eigenequation (10) is solved by the contour-crossing method over the alternative two-
variable space of (u,¹), so that

Re[Q(u,¹ )]"0, Im[Q(u,¹)]"0. (11)

Since ¹ is tension normalised by oH;*2
.!9

hH, a low #ow velocity means a high value of ¹. If
multiple solutions are found, the one with the highest value of ¹ becomes the critical
condition for membrane instability. The value of ¹ for this condition is called the critical
tension. If the eigenfrequency vanishes, the membrane experiences a static divergence;
otherwise the eigenmode is associated with #utter.

At the eigensolution points, there are N!1 independent equations in the set of N linear
equations in (10), where N is the total number of in vacuo modes used. These are solved for
the eigenvectors which are then normalised by the "rst mode amplitude A

1
. The character-

istic membrane displacement curve g is constructed from these complex amplitudes
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according to equation (7). The #uid loading for the eigenvibrations can also be constructed
by the linear superposition of the loadings calculated for di!erent modes at the eigen-
frequency.

The eigenvibration displacement g(x, t) has to satisfy the boundary conditions of the
pinned membrane at x"0,¸, and is therefore a standing wave. It can be decomposed into
downstream- and upstream-travelling waves, which may be called, respectively, the incident
and re#ected waves denoted by subscripts i and r. Hence,

sin( jnx/¸)"
i

2
(e~*jnx@L!e`*jnx@L), g"(g

i
#g

r
) e*ut,

g
i
"

i

2
+
j

A
j
e~*jnx@L, g

r
"

!i

2
+
j

A
j
e`*jnx@L.

(12)

The amplitude and phase angle distributions of incident (g
i
) and re#ected (g

r
) waves are

studied separately, so are the coupling between the total #uid loading with the decomposed
elastic waves.

2.3. ENERGY CONSERVATION

As we place much emphasis on the role of each physical ingredient in the process of energy
transfer from the #uid #ow to the vibration of the wall, and from the mean #ow to
#uctuations, some form of energy conservation analysis is very useful. To do so, we "rst
review the practice in aeroacoustics where the perturbation energy density and its #ux are
de"ned, respectively, as

EH"
pH@2

2oHc*2
#

pH@
c*2

(VH ) vH)#
1

2
oH(DvHD2), IH"A

pH@
oH

#VH ) v*B (oHvH#oH@VH),

where cH is the speed of sound, oH, oH@ are the #uid density and its perturbation, respectively,
and VH, vH are the mean #ow and perturbation velocity, respectively. A conservation law of
the form

LEH

LtH
#$H ' IH"0,

is established for sound propagation through inviscid, potential #ows. The right-hand side
does not vanish in other situations, and they can be called the sources of sound energy thus
de"ned. It must be pointed out, however, that the second-order terms like these can only be
loosely interpreted as energy density and energy #uxes, and they are in general not identical
to the di!erence of energy in a perturbed state minus that of the undisturbed. This issue has
been discussed at length in the study of sources of sound in the presence of #ow, especially
turbulent and inhomogeneous #ow (Morfey 1971; MoK hring 1971). There are two excep-
tions, however, where unambiguous physical interpretations are possible. One is classical
acoustics where there is no mean #ow, and the other, which is less well known, is sound
propagation through potential #ow. The #ux (IH) thus de"ned is normally referred to as the
Blokhintsev #ux (MoK hring 1971), which has a clear physical interpretation and is directly
related to the energy transfer between #uid and structure. This is the main reason why we
adopt this set of de"nitions. More precisely, the #ux through a vibrating boundary
corresponds to the energy transfer between sound and structure through the action of
pressure perturbation pH@. (The mathematical details for the more general case of viscous
#ow are presented below.) Applying this concept to a geometric con"guration like Figure 1,
with Poiseuille #ow substituted by a potential #ow, the integration of $H ' IH over the
rectangular domain occupied by the #uid is equal to the sum of #uxes through all
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boundaries. Since IH vanishes on all rigid walls, the #uid-to-membrane energy transfer can
be calculated by adding together the sound energy #ux coming into the calculation domain
through the upstream and downstream boundaries. Knowing that there should not be any
perturbation wave coming into the domain from the far "eld in either direction, which is the
so-called causality condition, one immediately concludes that the membrane cannot absorb
energy from #ow, hence no #utter in a potential #ow.

In the case of viscous #ow, the situation is di!erent. However, a similar conservation law
can be derived for the con"guration shown in Figure 1 by taking into account the viscosity
e!ect and, for simplicity, excluding the compressibility e!ect (oH@"0, cHPR). We there-
fore de"ne

EH"
1

2
oH(u*2#v*2), IH"oHMuH, vHNC

p*@
oH

#;HuHD .

After normalising EH by oH;*2
.!9

and IH by oH;*3
.!9

, the dimensionless form of energy
conservation is written as

LE

Lt
#$ ' I"S, E"

1

2
(u2#v2), I"(p@#;u) Mu, vN, (13)

where S is the source of #uctuation energy to be found by substituting Lp@/Lx and Lp@/Ly in
$ ' I with the pressure gradient given in the linearised momentum equations in equation (6).
After some manipulation, the source terms are found as follows:

S"$ '$kA
u2#v2

2 B !k (D+uD2#D+vD2)!;vA
Lv

Lx
!

Lu

LyB .

hggiggj
hggiggj

hggiggj
(14)

J ( #

The three labelled groupings are given the names of viscous surface #ux J, viscous bulk
damping (, and vortical absorption #, respectively. All these terms vanish in inviscid
potential #ow. It might be tempting to group J with I and call (I!J) the new #ux, but such
a de"nition risks creating conceptual inconsistency as the energy density term E does not
and cannot contain any term of viscous origin. Besides, as will be shown later, the value of
the viscous surface source is found to be positive, at least in our studies; it is therefore
convenient to interpret this term as a source. On the contrary, the value of the new #ux
(I

n
!J

n
) is negative, which is somewhat against established physical intuition.

The energy #ux from #uid to the membrane across the interface, where ;"0 and
v"Lg/Lt, is I

n
"!p@v, where n is the outward normal vector in !y direction. Notice that

pressure is not the only force acting on the membrane. The energy balance for the harmonic
vibration of the membrane is found by multiplying equation (1) by the conjugate of
vibration velocity (g5 )H, and integrating it over the membrane length,

P
L

0

[!m(1!ip)u2g(g5 )H!¹g
xx

(g5 )H#p
1
(g5 )H] dx"0,

from which half of the real part yields the time-average energy balance:

1

2
ReCP

L

0

puDg5 D2 dxD"
1

2
ReCP

L

0

(!p@) (g5 )HdxD#
1

2
Re CP

L

0

2k
Lv

Ly
(g5 )HdxD .

hgggigggj hggggiggggj hggggiggggj
(15)

Wp Wp Wk
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Note that the asterisks outside the brackets denote conjugate instead of dimensional values.
It is perhaps necessary to explain why the time-average of the term :L

0
¹g

xx
g5 dx is zero.

Expanding g
xx

g5 as

g
xx

g5 "
L
Lx

(g
x
g5 )!g

x

L
Lx

g5 "
L
Lx

(g
x
g5 )!

1

2

L
Lt

(g
x
)2,

we see that the "rst term on the right-hand side does not make any contribution to
integration since the membrane is "xed (g5 "0) at both ends, nor does the second term for
a stationary oscillation. As it turns out in our study of #utter modes, the viscous contribu-
tion,=k , is always negative, or stabilising, as might have been anticipated from the nature of
the viscous di!usion of vertical momentum from the membrane surface, Lv/Ly(0 for v'0.
Therefore, the behaviour of the energy #ux term,=

p
becomes crucial for the investigation of

the origin of #utter mechanism.
Integrating equation (13) over the computational domain for the harmonic vibrations,

P
1

0

I
n
D
61453%!.

dy#P
1

0

I
n
D
$08/453%!.

dy#P
L

0

(!p@)vdx"Q J
n
dl!PP(ds!PP#ds,

hggiggj hggiggj hgigj hij hij hij
Fu Fd Fm/Wp SJ S( S#

(16)

where the conjugation and time-average operations are omitted for brevity, I
n
,J

n
are the

outward-going #uxes, ds is the elemental area and dl the elemental boundary length. The
source integrals are denoted by S with subscripts indicating the source terms de"ned in
equation (14), and #uxes are denoted by F with subscripts indicating the boundaries. The
#ux through the membrane, F

m
, is equivalent to the part of work done on the membrane by

normal pressure,=
p

de"ned in equation (15). Combining equations (15) and (16), we get

=
p
"S

J
!S(!S#!F

u
!F

d
. (17)

We can now trace the sources of #uid-to-structure energy transfer to the viscous surface
source, S

J
, viscous bulk damping, S(, and the vortical absorption S# , while the energy

radiation to the far "eld, F
u
, F

d
50, shares part of the #uctuation energy. As will be shown

later, S
J
'0, and it dominates over the viscous damping S( , leading to a net positive

contribution from the terms proportional to #uid viscosity, S
J
!S('0. The aggregate

e!ect of the #uid viscosity terms is found to be destabilising as in the case of Tol-
lmien}Schilitchting waves, but the work done by the viscous normal stress,=k de"ned in
equation (15), is stabilising. It will also be shown later that the two e!ects from #uid
viscosity are found to compete with each other in the #utter eigenmode.

2.4. ELEMENTARY MODAL ANALYSIS

In order to appreciate the physics at the elementary level, the behaviour of the #uid #ow
driven by a speci"ed modal vibration of the wall is analysed in detail. For mode 1 under the
blowing-type of boundary conditions, the solution is shown in Figure 2. The basic para-
meters used are ¸"1)5, ¸

u
"¸

d
"2, k"1/200, which will also serve as the default setting

for the basic example in the next section. The driving frequency is u"0)13. Around 50 000
elements are used in the calculation and the relative error tolerance is 10~5.

Figure 2(a) shows the real part of the perturbation velocity vector, Mu, vN. The real part
represents the actual situation at time t"0 for a membrane harmonic vibration speci"ed as
g"sin (nx/¸)e*ut. The membrane vibration velocity is g5 "iu sin (nx/¸) and is illustrated by



Figure 2. FEMLAB' solution of the linearised Navier}Stokes equations when the membrane undergoes
a speci"ed "rst mode vibration with u"0)13. (a) and (b) show, respectively, the real and imaginary parts of the
perturbation velocity vectors, with the wall positions illustrated by the thick solid lines; (c) and (d) show,
respectively, the real and imaginary parts of the #uid loading on the membrane. Note that the vibration velocity is

purely imaginary in terms of phase angle.
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the hump in Figure 2(b), Re(g5 ) being zero for Figure 2(a). The pattern of Re(u, v) is
essentially a clockwise `vortexa on the leeward side of the displaced membrane. Strictly
speaking, streamlines constructed by the total velocity M;#u, vN continue to be as in
parallel #ow since the linear perturbation is in"nitesimal. However, the analysis of the
perturbation velocity patterns in terms of real and imaginary parts will help our under-
standing of the details of each physical ingredient in the #uid}structure interaction. The
pattern can be interpreted as follows. The #uid particles near the wall carry more vorticity
than those near the centre, and the upward wall displacement creates a local excess
clockwise vorticity. The excess vorticity is highest at y"!0)5, but the convection e!ect of
this vorticity, ;(Lv/Lx!Lu/Ly), is concentrated somewhere away from the membrane, and
coincides well with the above-mentioned perturbation `vortexa pattern. The detailed
explanation of why a perturbation `vortexa is anchored on the leeward side of the
membrane can be found in Huang (1998). As the perturbation vorticity is convected by the
mean #ow, it is subject to an upward force which some call the `vortex forcea (Lighthill
1962). Mathematically, this force is balanced out by a positive vertical pressure gradient, as
is shown by the linearised vertical momentum equation for the inviscid, steady #ow,
Lp@/Ly"!Lv/Lx, in which Lv/Lx(0 for the clockwise perturbation vorticity. As a result,
the leeward side of the membrane wall experiences the lowest pressure. This can be seen
from Figure 2(c), which gives the real part of the normal stress, Re(p

1
), in-phase with the

displacement g. Overall, Re(p
1
) is negative over the membrane region, x3[0,¸], which

indicates a tendency for the membrane to collapse. This e!ect is shared by the passage



TABLE 1
Results of energy conservation analysis for mode 1

Source term Result Output #ux Result

Viscous source S
J
"0)2390 To upstream F

u
"0

Bulk dissipation S("0)2126 To downstream F
d
"0)0076

Vortical absorption S#"0)0284 To membrane F
m
"!0)0094

Net source !0.0019 Net #ux !0)0017
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narrowing of a uniform #ow, namely the Bernoulli e!ect. However, an asymmetric pattern
of Re (p

1
) with respect to the membrane centre, x"¸/2, is created by the shear #ow. The

positive value of Re(p
1
) over part of the upstream half of the membrane indicates a reversal

of the Bernoulli e!ect (Huang 1998).
Figure 2(b) shows the imaginary part of the velocity perturbation, which is inphase with

the membrane vibration velocity whose distribution is shown as a hump on the lower wall.
The volume of #uid displaced by the membrane is drained through the downstream
boundary since the upstream end has a boundary condition of zero velocity perturbation.
Figure 2(d) is the imaginary part of p

1
, or Im(p

1
), which is inphase with the membrane

vibration velocity. A positive value indicates that the membrane has to do work against the
#ow and is therefore not prone to vibration. It is shown later that, when the membrane loses
stability, the actual eigenvibration is far from being the "rst in vacuo mode shown in
Figure 2.

The energy conservation analysis is shown in Table 1. The "rst column gives the results of
source term integration, where the sources are speci"ed in equation (14). The second column
shows the integrated #uxes across three borders, in which the one through the membrane
accounts for the work done by the pressure term alone,=

p
"F

m
; =

p
(0 means that the

membrane does work on the #uid when it undergoes a specixed mode 1 vibration. Ideally,
the net source should be equal to the net #ux going out. The numerical error is 0)0002,
which is 2% of F

m
, or 0)08% of the largest term S

J
in the energy conservation equations (13)

and (14). If one combines the two viscous terms together, the total viscous source is
S
J
!S("0)0264, which is comparable in magnitude to the energy absorbed by the

vorticity perturbation, S# . To a certain extent, the results come as a surprise, since the
viscous terms contribute to the production of #uctuation energy, while the perturbation of
vorticity "eld absorbs it, which is opposite to the e!ect of vorticity gradient shown for the
inviscid shear #ow in Huang (1998). The vortical absorption can be further analysed by
decomposing the term ;v(Lv/Lx!Lu/Ly) into the coupling of real parts and imaginary
parts of vertical velocity v and vorticity (Lv/Lx!Lu/Ly), which works out as 0)0289 and
!0)0005. Therefore, the real part dominates and it apparently does so by the convection of
a perturbation `vortexa shown in Figure 2(a). The vorticity (Lv/Lx!Lu/Ly)(0, or clock-
wise, but the vertical velocity is upwards in the upstream part but downwards in the
downstream part. The up-drafting of clockwise vorticity produces #uctuation energy, while
down-drafting of clockwise vorticity further downstream absorbs it. The total is absorption
in this case, indicating a general trend of more down-drafting action downstream of the
narrowest point in the #ow passage.

By far the most dominant source term is the viscous surface source S
J
. The outward going

#ux of J is calculated as follows on the membrane surface, where the source term is signi"cant,

J
n
"!k(uLu/Ly#vLv/Ly).
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We "nd numerically that J
n
'0 and DuLu/LyDADvLv/LyD, and that J

n
does not change sign as

kP0. The "rst term in J
n

is dominant and is analysed in more detail. On the boundary of
y"!0)5, the axial velocity is u"!g (d;/dy)(0. But this perturbation decays away
from the wall, so that Lu/Ly'0, hence !kuLu/Ly'0. This term can be interpreted as the
power provided by some external force causing the #uid to `slipa to the left on the
geometrical border of y"!0)5. In essence, the energy transfer from the mean #ow to
#uctuation "nds its way through the no-slip boundary condition which requires
u"!g (d;/dy) on the geometric interface y"!0)5. This mechanism is similar to the
interface coupling investigated by Kumaran (1995a, b), who treated the problem of Stokes
#ow instability over a viscoelastic gel where the #uid}gel interface has a strain discontinuity
similar to d;/dy in our model.

3. RESULTS

The system has six control parameters, and the following values are chosen as the `defaulta
setting for the basic example and parametric studies:

¸
u
"2, ¸"1)5, ¸

d
"2, k"1/200, m"100, p"0)5%. (18)

Incidentally, the mass ratio and the #ow Reynolds number used here are approximately
those found in the respiratory #ow in the 8th generation of the bronchial structure of human
lungs (Fung 1993). The upstream and downstream distances, ¸

u
,¸

d
, are, however, chosen

purely for the computational convenience. They are shorter than those needed in a nonlin-
ear calculation, where the solution has to be stable for the steady #ow with #ow separation
(Luo & Pedley 1996). The baseline #ow used in the present study is an attached #ow, and
there is no need to specify a long downstream distance in order to stabilise the computa-
tional scheme. In fact, the upstream and downstream distances control the resistance and
inertia for the linear perturbation, and their e!ects on the eigenvalues are studied later. It is
found that the upstream distance, ¸

u
, has little e!ect on results when u"v"0 is speci"ed

at the upstream boundary, e!ectively reducing the number of controlling parameters to 5.
The in vacuo modes are truncated at N"10 and its su$ciency is demonstrated below by

the decaying of modal amplitudes and its comparison with the results of N"8 as well as
N"20,

MDA
j
DN"M1, 6)1713, 0)4556, 0)0240, 0)0330, 0)0050, 0)0090, 0)0019N, N"8,

MDA
j
DN"M1, 6)1892, 0)4557, 0)0239, 0)0330, 0)0050, 0)0090, 0)0019, 0)0037, 0)0010N, N"10,

MDA
j
DN"1, 6)1725, 0)4556, 0)0240, 0)0330, 0)0050, 0)0090, 0)0019,

0)0037, 0)0010, 0)0019, 0)0005, 0)0011, 0)0003,2N, N"20.

The decaying of DA
j
D with respect to j is not strictly monotonous, but the general trend is.

Further increase of N does not change the eigenvalue in any signi"cant way, as shown
below for the #utter mode given in Figure 3,

N"8 : u"0)1292, ¹"0)1342,

N"10 : u"0)1294, ¹"0)1346,

N"20 : u"0)1292, ¹"0)1342.

We are therefore satis"ed with N"10.



Figure 3. The solution to the eigenequation (10) by the interception of contour curves (----- line for real and
** line for imaginary) for the default parameters chosen in (18). The } ) } ) } parabolic curves are the in vacuo

modes (with mode indices marked) shown for reference purpose.
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3.1. BASIC EXAMPLE

The process of "nding the eigenvalues for the default set of parameters given in equation
(18) is shown in Figure 3. The thick and thin lines represent, respectively, the solutions to the
real and imaginary parts of the eigenequations in equation (11). The chain-dotted lines,
which run through the origin u"¹"0, are the frictionless, in vacuo modes shown here as
a reference. The in vacuo mode indices are marked along the lines. The frictionless, in vacuo
modes are found as a parabolic curve by setting p"0 and P

jn
"0 in equation (9), hence,

P
j
"0, u

j
"

jn
¸ S

¹

m
.

The open circles in Figure 3 are the eigenmodes found for the #uid-loaded membrane. Two
static divergence points are found on the vertical line of u"0, and many dynamic
instability points are found below the parabolic curve representing the second in vacuo
mode. The higher value of tension ¹ for the two static divergence points is 0)1123,
marginally lower than that of the dynamic instability mode at u"0)1294, ¹"0)1346. The
latter is therefore identi"ed as the critical instability condition in this case. The critical
eigenmode is found between the parabolic curves corresponding to the 1st and 2nd in vacuo
modes. Since the levels of the tensile force required for the static divergence and for the
critical dynamic instability are rather close to each other, the two modes may occur together



Figure 4. The eigenvibration (#utter) of the membrane at frequency u"0)1294, and the critical tensile stress
¹"0)1346: (a) displacement g(x); (b) amplitude distribution of the decomposed elastic waves, Dg

i
D, Dg

r
D ; (c) phase

angle distribution of the decomposed waves.
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in practice. In other words, the membrane may collapse and, during the collapse, experience
growing oscillations.

The vibration amplitudes at the critical #utter condition are, after normalisation against
the "rst mode,

MA
j
N"M1, !5)23#3)51i, 0)512!0)225i, 0)004!0)031i,2N.

The second mode dominates over the "rst, while the amplitudes of other modes diminish
quickly but not monotonously with the mode index, as explained earlier. The real and
imaginary parts of the eigenvibration amplitude, g(x), are shown in Figure 4(a) by the solid
and dashed lines, respectively.

Figure 4(b) shows the amplitudes of the decomposed incident (solid line) and re#ected
(dashed line) elastic waves [de"ned in equation (12)]. The incident wave grows along x while
the re#ected wave decays as it travels upstream. The phase angle distribution is shown in
Figure 4(c). Both the incident and the re#ected waves have rather constant phase speed,
which are, respectively, 87)6%, 80)7% of the in vacuo tensile wave speed represented by

J¹/m. When compared with;H
.!9

, the corresponding percentages are, respectively, 3)2 and
3)0%, indicating very slow waves.

The pressure distribution is shown in Figure 5(a). The energy transfer from the #uid to the
membrane vibration is calculated by

=(x)"1
2
Re[!p

1
(g5 )H],

where the asterisk outside the brackets denotes the conjugate of a complex number. Note
that

P
L

0

=(x) dx"=
p
#=k .

The power distribution=(x) is shown in Figure 5(b). Positive work is done in the upstream
part while negative work is done in the downstream part. The total is positive and is
balanced out by that consumed by the structural damping. If the membrane vibration is
decomposed into incident and re#ected elastic waves, the coupling of the total #uid loading
with these waves produces power distribution shown in Figure 5(c),

=(x)"=
i
(x)#=

r
(x), =

i
(x)"1

2
Re [!p

1
(g5

i
)H], =

r
(x)"1

2
Re[!p

1
(gR

r
)*].



Figure 5. Fluid loading and energy transfer from #uid to the membrane vibration: (a) p
1
; (b) #ow-to-wall energy

#ux=(x); and (c) power decomposition into the products of #uid loading with the vibration velocity of the incident
(=

i
) and re#ected (=

r
) waves.
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The downstream-travelling wave is seen to provide all the energy transfer (solid line) while
the re#ected wave absorbs most of it (dashed line), leaving a small fraction (about 2%) to be
balanced out by the structural damping.

The other way to analyse the #uid}structure coupling is through the modal decomposi-
tion. It has been shown in Figure 2(d) that, for the speci"ed "rst-mode vibration, the #uid
loading is against the vibration, namely the work done is negative. In the eigenvibration
composed of certain combinations of modes, the work done on the nth modal vibration by
the #uid loading caused by the jth modal vibration is calculated as follows:

=
nj
"1

2
ReGP

L

0

[!A
j
P
nj

sin(nx/¸)] [iuA
n
sin(nx/¸)]HdxH"

u¸

4
Im[!A

j
P
nj

(A
n
)H],

while the total work is the sum of all modal combinations,="+
n,j
=

nj
. The cross-modal

#uid-structural coupling is shown below in matrix form for the calculated eigenvibration:

Column j for modal source of p
1

dgggggggegggggggf

="10~2]+

!0)9680 1)1636 !0)1355 2

7)7064 !4)5729 !1)5055 2

!0)2141 0)3154 !0)0700 2

2 2 2 2

e
g
g
f
g
g
h

Row n for
Lg
Lt

.

The diagonal elements represent the self-coupling and are all negative, i.e., stable. The main
mechanism of energy transfer from the #uid to the membrane comes from=

21
, namely the

coupling between the second-mode vibration velocity and the #uid loading derived from the
"rst-mode vibration. In other words, it is because the #uid loading from the "rst in vacuo
mode vibration is not symmetrical about x"¸/2 as the vibration velocity is, cf. Figure 2(d).

3.2. EFFECTS OF MEMBRANE PROPERTIES

When the structural loss factor in the basic example increases from p"0)5 to 5%, the new
pattern of eigenmodes search is shown in Figure 6(a). The marginal dominance of the #utter
mode in the original setting (Figure 3) gives way to a clear dominance by static divergence.



Figure 6. The e!ect of higher structural damping (p"5%). The right side up and down triangles plotted on the
ordinate in (a) correspond to legends of the two static divergence modes in (b) and (c). (a) The dominance of static
divergence at ¹"0)1123 over #utter at ¹"0)0796 and the second static divergence at ¹"0)0483. (b) The
eigendistributions of displacement for the two static divergence modes. (c) The #uid loading for the two static

divergence modes.

Figure 7. The e!ect of membrane mass m. (a) The critical tension for static divergence (} } } line) and #utter
(== line). (b) The oscillation frequency of #utter.
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The values of ¹ for #utter and divergence are, respectively, 0)0796 and 0)1123, the latter
being unchanged from its value at p"0)5%. The dominance of divergence over #utter for
higher structural damping is consistent with results of all other theoretical models men-
tioned in the Introduction. The two static divergence modes are labelled by * and +,
respectively, in Figure 6(a). Their eigendisplacement and pressure distributions are shown in
Figure 6(b, c), solid lines being the dominant mode (*) and dashed lines the secondary
divergence mode (+). The two modes are dominated by the "rst and second in vacuo modes,
respectively. In both modes, the overall e!ect of the #uid loading is to cause collapse of the
membrane, and the tendency of membrane collapse is higher over the downstream portion.
Mechanisms leading to the #uid loading asymmetry are explained in Section 2.4.

The e!ects of the structural inertia are shown in Figure 7. Eigenmodes are separated into
two groups corresponding to static divergence and dynamic instabilities, and the mode with
the highest value of ¹ in each group is studied. It is found in Figure 7(a) that ¹ for #utter
increases with m over most of the range, while that for collapse stays as a constant at 0)1123,



Figure 8. The e!ect of structural loss factor p. (a) The critical tension for divergence and #utter as functions of p.
(b) The frequency of #utter oscillation as a function of p.
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the two being equal when m"21)3. Below this value, static divergence dominates over
#utter, and vice versa. This again indicates that the membrane inertia is pro-#utter when it is
small. The trend shown in Figure 7(a) also indicates clearly that when mP0, static
divergence is the dominant instability. Figure 7(b) shows the oscillation frequency of the
#utter mode as a function of mass ratio. Heavier membranes vibrate at lower frequency.

The e!ects of the structural loss factor (p) are shown in Figure (8) using a logarithmic
scale, The range chosen for p is 0)1}5%, but it is pointed out that #utter mode is also found
for p"0 at u"0)172,¹"0)152, which, if plotted, should be located slightly above that for
p"0)1%. A clear distinction between the critical tension levels required for the two types of
instability is shown in Figure 8(a). Dominance is reversed at p"1)4%. With lower p, #utter
dominates over divergence, and vice versa. Note that the occurrence of static divergence is
independent of the structural damping, and a constant level of ¹"0)1123 is shown in
Figure 8(a); but the critical tension for #utter does depend on p. However, the #utter
mechanism does not solely depend on energy transfer from the #ow to the membrane, since
#utter also occurs when p"0. In this case, the surface compliance plays the role of
modifying the instability essentially taking place inside the channel #ow. Figure 8(b) shows
that the #utter frequency decreases with p, but this is mainly related to the decrease of the
critical ¹ shown in Figure 8(a).

Figure 9(a) shows the e!ect of the membrane length on the critical values of tension for
#utter and divergence instabilities, in which all parameters except the length are the default
values set in equation (18). Ten calculations are performed for ¸"0)5}5)0, but Figure 9(a) is
zoomed to show only ¸ up to 4 for a better view. Membranes longer than 1)03 experience
#utter before divergence, and vice versa. This means that longer membranes are unlikely to
experience collapse. In fact, membranes longer than about 3 (for this particular case) do not
have eigenmodes of static divergence, or have such modes but with very low critical tension.
The mode of long-wave static divergence is absent due to the lack of an elastic foundation.
This outcome may be appreciated from two perspectives. First, it is easier to excite second
and higher in vacuo modes on long membranes than on shorter ones, bearing in mind that
#utter features the second mode more than the "rst. Second, downstream-travelling waves
tend to grow, while upstream waves decay [see Figures 4(b) and 12(c)]. The net gain of
elastic wave energy is used to overcome structural damping. For longer membranes, the
downstream-travelling waves have a longer distance in which to grow, but the re#ected
wave cannot take full advantage of the length, as it decays. The result is that, for the same
structural loss factor, longer membranes are more prone to #utter. But it is pointed out that



Figure 9. E!ect of membrane length. (a) The variation of the critical tension, corresponding to both static
divergence and #utter. (b) The oscillation frequency of #utter.

Figure 10. E!ect of the upstream distance ¸
u

(a) on the critical tension, and (b) on the #utter frequency.
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these conclusions may change when elastic foundations are included in a model which
exhibits the &tube-law' behaviour.

The variation of the #utter frequency is plotted against the membrane length in Figure
9(b). The oscillation frequency increases with the membrane length, an e!ect accompanied
by the increase in the critical tension.

3.3. EFFECTS OF BOUNDARY CONDITIONS

There are three factors in the boundary condition: the upstream distance ¸
u
, the down-

stream distance ¸
d
, and the boundary conditions speci"ed at these two computational

borders. The e!ects of ¸
u
and ¸

d
are studied separately by varying each of these parameters

based on the default setting of equation (18) for the blowing type of boundary conditions.
The e!ects of ¸

u
are shown in Figure 10. There is e!ectively no in#uence of ¸

u
on the

eigenvalues. This is because all small perturbations die out towards upstream by #uid
viscosity, and yet viscosity does not in#uence the velocity "eld in the upstream region, since
u"v"0 are speci"ed as upstream boundary condition. The pressure on the membrane is
only in#uenced by the downstream distance, since p@"0 is speci"ed at the downstream end.

The e!ects of downstream distance ¸
d

are shown in Figure 11. It is found in Figure 11(a)
that ¸

d
promotes static divergence, which in the present example overtakes #utter when



Figure 11. E!ect of downstream distance ¸
d
, (a) on the critical tension, and (b) on the #utter frequency.
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¸
d
"8)9 (shown as the open circle in the "gure). A larger downstream distance decreases the
#uid pressure over the membrane as p@"0 is speci"ed downstream. The in#uence on #utter
frequency is not strong, as shown in Figure 11(b).

The current upstream boundary condition "xes the volume #ow rate. As a result, there is
no velocity perturbation there. At the downstream end, there is no pressure perturbation,
which simulates an open end. When the boundary conditions are swapped, upstream and
downstream, this then simulates a suction #ow with an open upstream entrance (while
ignoring the e!ect of the developing boundary layer). For the suction #ow, the perturbation
"eld caused by the speci,ed "rst-mode vibration is shown in Figure 12. The convection of
perturbation vorticity above the leeward side of the membrane in Figure 12(a) is similar to
that in Figure 2(a). This part of the #ow perturbation is mainly related to the membrane
displacement. The baseline #ow vorticity near the wall is displaced upwards and is carried
downstream by the mean #ow. The situations for the blowing and suction #ows are rather
similar, as far as this part of the perturbation #ow is concerned. However, the imaginary
part of the perturbation #ow shown in Figure 12(b) di!ers from that in Figure 2(b). For
suction #ow, the downstream part allows no change in the volume #ow rate, the displaced
#uid is therefore drained through the upstream boundary. The real part of the pressure
perturbation shown in Figure 12(c) is similar to that in Figure 2(c). But the imaginary parts
di!er dramatically in terms of the sign of pressure. In the suction #ow, the upstream
pressure is "xed, so that the perturbation pressure over most part of the wall is negative, as
shown in Figure 12(d). This component of the pressure couples with the vibration velocity
and transfers energy from the #uid #ow to the membrane.

The character of this coupling may be compared with the argument of negative resistance
condition for the Starling-resistor tube oscillation put forward by Conrad (1969, 1995). In
that argument, the tube instability is related to the steady #ow condition in which increased
upstream}downstream pressure drop results in less #ow instead of more #ow. In our linear
analysis with the condition of no change in volume #ow rate at the downstream boundary,
the steady state is "xed. The same is approximately true for the real part of the perturbation
velocity near the inlet boundary, as shown in Figure 12(a). However, the transient #ow
character displayed by the imaginary part of the velocity perturbation shown in
Figure 12 (b) indicates a temporarily reduced #ow under the condition of increased pressure
drop shown in Figure 12(d). This can be seen as a kind of dynamic negative resistance.
Applying a similar analysis for the blowing #ow boundary conditions shown in Figure 2,
one gets the opposite result. There the speci"ed "rst mode vibration is stable, and the #utter



Figure 12. The perturbation #ow "eld and the #uid loading on the wall for the suction #ow. All parameters are
the same as those in Figure 2. (a) and (b) show, respectively, the real and imaginary parts of Mu, vN, with the wall
positions illustrated by the== lines; (c) and (d) show, respectively, the real and imaginary parts of p

1
on the wall.
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is actually caused by the cross-modal coupling, which is absent in the studies of Conrad
(1969) and most other experiments of this kind.

The eigenvibration modes for the suction #ow are shown in Figure 13. The contour-
crossing shown in Figure 13(a) indicates the dominance of the #utter mode (indicated by an
open circle) at (u"0)9332, ¹"20)79) over the divergence mode which is too low to be seen
in the "gure and will not be analysed further. This contrasts sharply with the #utter
predicted for the blowing-type boundary conditions at (u"0)1294, ¹"0)1346) in Figure
3. The oscillation frequency is much higher, and the critical tension is also much higher. For
a given membrane tension, the higher value of ¹ means a much lower value of #ow velocity
when #utter occurs. In other words, the suction #ow is much more prone to #utter than the
blowing #ow. The eigenfrequency is found to be slightly below that of the "rst in vacuo
mode (u

1
"0)9632), in contrast with the case of blowing #ow. The eigendisplacement

shown in Figure 13(c) is also quite di!erent from its counterpart in Figure 4(a). Here the "rst
mode dominates and there is little second or higher-order modes. The pressure distribution
is shown in Figure 13(d). Note that in Figure 13(c) and 13(d), the imaginary parts (dashed
lines) are magni"ed by 50 and 5 times, respectively, so that they can be seen clearly.
Comparing the distribution of the displacement (g) in Figure 13(c), with the distribution of
the #uid loading (p

1
) in Figure 13(d), it is found that they have roughly an antiphase

relationship, for both real and imaginary parts. In other words, the #uid loading tends to
collapse the membrane further. The #uid-wall energy transfer, =(x), is shown in Figure



Figure 13. The solution for the suction #ow boundary conditions. All parameters are the same as those of
equation (18) except the inlet and exit boundary conditions. (a) The solution for the eigenequation (10) by the
contour-crossing method. (b) The work done by the #uid on the membrane, (c) The eigendisplacement g. (d) The
#uid loading distribution p

1
. In (c) and (d), the imaginary parts are magni"ed by a factor of 50 and 5, respectively,

for clarity.
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13(b). The pattern of ='0 in the downstream part and =(0 in the upstream part is
exactly opposite to the pattern shown for the blowing #ow in Figure 5(b). In terms of
cross-modal coupling, the #ow-to-membrane energy transfer is given by
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1
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The energy transfer mainly derives from the self-coupling of the "rst mode. In terms of the
membrane vibration velocity, decomposed into the incident and re#ection waves, the
coupling between the #uid loading with the incident wave is unstable while that with the
re#ected wave is stable, similarly to what is found for the blowing #ow in Figure 5(c).

Since the #utter mode is predominantly the "rst in vacuo mode (DA
1
/A

2
D"280)3 for the

above example), we may take a one-mode approximation (N"1) to examine the dynamics
of the membrane vibration. Equation (9) is simpli"ed and split into real and imaginary



Figure 14. Variation of (a) #utter frequency and (b) critical tension as functions of structural damping.

TABLE 2
Results of energy conservation analysis for the default eigen#utter mode

Source term Result Outgoing #ux Result

Viscous source S
J
"16)3510 To upstream F

u
"0

Bulk dissipation S("14)3299 To downstream F
d
"0)01343

Vortical absorption S#"1)9171 To membrane F
m
"0)03225

Net source 0)1041 Total #ux 0)0457

1084 L. HUANG
parts, which can be solved for eigenvibration frequency and critical tension, i.e.,

%
1
#P

11
+0, where %

1
"mu2(!1#ip)#¹(n/¸)2.

Real:!mu2#¹(n/¸)2#Re(P
11

)+0, Imaginary: mu2p#Im(P
11

)+0.

Solution: u+J!Im(P
11

)/(mp), ¹+![Re(P
11

)#Im(P
11

)/p](¸/n)2.

Here P
11

is the "rst mode coe$cient of the #uid loading caused by the "rst mode vibration.
For the eigenvibration frequency shown in Figure 5, P

11
"!3)9864!0)4366i. The critical

tension estimated by the above approximate solution is 20)82, which is very close to the
10-mode result of ¹"20)79. Of course, P

11
is a function of u and the above solution is

strictly speaking an implicit one. It would be interesting to examine the variation of the
eigenvibration frequency as a function of p for the 10-mode modelling. The results are
shown in Figure 14(a), which con"rms the trend of uJp~1@2. This means that
Im(P

11
)(0 is the essential feature responsible for #utter in suction #ow, and that mode

1 self-coupling is the origin of energy transfer.

3.4. EFFECT OF VISCOSITY

In Section 2.4, viscosity has been shown to play a pivotal role in creating perturbation
energy during a speci"ed motion of the membrane. The eigen#utter mode has been
predicted at u"0)1294, ¹"0)1346 for the default set of parameters shown in equation
(18). We now analyse the energy balance for the #utter eigenmode. The error for the energy
conservation

S
J
!S(!S#"F

u
#F

d
#F

m
,



Figure 15. Fluid viscosity e!ects. (a) Critical tension for #utter (----- lines) and static divergence (** lines) for
two membrane lengths, ¸"1)5 and 1)0; (b) the #utter frequency for the two membranes; (c) the vortical absorption
of #uctuation energy S# normalised by the viscous dissipation S( ; (d) ratio of #uid viscous stress work done on the

membrane=k relative to the structural damping of the membrane=p .
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amounts to 0)0584. This is very small compared with, say, S# , the ratio being 3%, and is
even more insigni"cant when compared with the largest component in the energy conserva-
tion equation, S

J
. This comparison serves as a measure of how accurate the numerical tool

is. Note that the error is partly contributed to by the streamwise di!usion technique whose
error vanishes as the mesh size decreases. Although this error is comparable to the energy
transferred to the wall, F

m
, one should assess the accuracy in this aspect by examining the

energy balance of the membrane vibration as written in equation (15). The balance for the
calculated #utter mode is

=p
0>01588

" =
p

0>03225

# =k
~0>01674

,

the numerical error being 2)3% relative to=p . The fact that the energy terms such as S
J

and
=

p
di!er by many orders of magnitude does not mean very weak #uid-structural coupling.

But rather, it derives from the fact the structural loss factor is speci"ed to be a very small
quantity, which in this case is p"0)5%. Despite the di!erence in magnitude, the role played
by #uid viscosity is de"nitely one of destabilisation, and the role played by the structural
damping is one of stabilisation, as shown in Figure 8. The former statement is further
con"rmed by the variation of critical tension with respect to the #uid viscosity k, as shown
in Figure 15. It can be seen from Figure 15(a), which also includes the results for a shorter
membrane ¸"1, that the critical tension increases as viscosity increases towards lower
Reynolds number (Re). When Re is very high, the critical tension settles down to a rather
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constant value. But the same is not true for static divergence. For the default length of
¸"1)5, the critical tension for #utter is always higher than that of static divergence. For
¸"1, the eigentension for #utter and divergence coincides at two viscosity values. The
in#uence of Reynolds number on frequency is more subtle, as shown in Figure 15(b). Figure
15(c) shows the vortical absorption of #uctuation energy (S#) normalised by the viscous
dissipation (S( ), and Figure 15(d) shows the ratio of work done by the viscous stress on
membrane (=k ) to the power consumed by the structural internal friction (=p ). Both "gures
indicate that the e!ect of #uid viscosity decreases as Reynolds number increases, which is
consistent with normal expectation. The stabilisation role played by #uid viscosity through
=k competes with the destabilisation e!ect through S

J
, which together give a minima in the

functional relationship between ¹ and Re. The minima can be found on the thick solid lines
in Figure 15(a), but their locations are obscured by the rather #at portion of the curve in the
region of high Reynolds numbers. For ¸"1)5, the lowest value of ¹ is 0)1310 and it occurs
at Re"624.

4. CONCLUDING REMARKS

As explained earlier, a laboratory model comparable to the current theoretical model is yet
to be constructed. The current analysis is based on the parallel #ow model and is unlikely to
compare well quantitatively with experiments in which the #ow pattern is highly three-
dimensional and the oscillations are highly nonlinear. The critical #ow velocity at which
#utter occurs in a parallel #ow channel is likely to be much higher than that needed for
a collapsed tube #ow. In other words, ¹ predicted in our analysis may seem to be rather low
when compared with that found in a Starling-resistor experiment. Nevertheless, the follow-
ing conclusions can be drawn.

1. Flutter and divergence may occur at similar #ow velocities, and may coexist. Flutter
and divergence exchange dominance when the wall properties change. Membrane inertia
and membrane length are pro-#utter, while structural damping suppresses oscillation
resulting in divergence as the main instability mode.

2. Conditions at the upstream and downstream ends of the channel have crucial e!ects
on the characteristics of the membrane instability. Two conditions are simulated in the
present study. One is called the blowing #ow in which the upstream part has a "xed volume
#ow rate while the downstream one has a "xed pressure. The other is called the suction #ow
in which the upstream part has a "xed pressure while the downstream one has a "xed
volume #ow rate. For blowing #ow, the upstream distance does not have a signi"cant e!ect
on the results when u"v"0 is speci"ed at the upstream boundary, but the downstream
distance is found to decrease the threshold for static divergence. For the blowing #ow, the
coupling of the #uid loading induced by the "rst in vacuo mode vibration and the vibration
velocity of the second in vacuo mode dominates the #utter mechanism. For the suction #ow,
the self-coupling of the "rst in vacuo mode is unstable and dominates the activities of other
modes. A dynamic version of Conrad's negative resistance argument is put forward to
elucidate the instability mechanism in suction #ow.

3. The elastic waves over a "nite membrane have a standing wave pattern which can be
decomposed into up- and downstream-travelling waves. The component of the down-
stream-travelling wave is responsible for energy transfer from the #uid to the wall. The
prevalence of #utter increases with membrane length, while that of static divergence
decreases. The "ndings in this particular aspect are therefore consistent with our earlier
theory (Huang 1998) regarding the instability of slow elastic waves exposed to shear #ows.
However, when the e!ects of the re#ection waves are accounted for, the total work done by
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the shear-#ow terms, S# , is negative, contrasting with the destablisation role projected for
S# in the case of a single downstream-travelling wave. The "nding that a longer membrane
is more prone to #utter than static divergence can be appreciated from the observation that
there is more chance for downstream-travelling waves to gain energy from the #ow and
grow on a longer membrane.

4. For very short membranes, for which the traditional tube-law is least satisfactory, it is
perhaps more appropriate to appreciate the results from the perspective of cross-modal
coupling. Flutter is found to arise from the coupling of the second-mode vibration velocity
and the #uid loading caused by the "rst-mode vibration. The emergence of the second and
higher-order modes can be analysed as follows. When a shear #ow passage is narrowed by
the membrane, excess vorticity near the wall is displaced and the convection of perturbation
vorticity form a pattern of perturbation `vortexa at the leeward side of a displaced
membrane [Figures 2(a) and 12(a)]. This perturbation `vortexa gives a particular portion of
the wall membrane more suction force than elsewhere, creating an asymmetric #uid loading.
The asymmetric loading promotes oscillation of the second and higher-order in vacuo
modes. The features of the #utter instabilities also depend crucially on the upstream and
downstream boundary conditions. For suction #ows, the #utter mode is almost entirely in
the form of the "rst in vacuo mode.

5. The role played by the #uid viscosity is destabilising, similar to that in Tol-
lmien}Schlichting waves. In our energy conservation analysis, viscous terms are split into
surface source terms and bulk dissipation terms. It is shown that the former always
dominate over the latter and yield net viscous source of #uctuation energy. The perturba-
tion of mean #ow vorticity also creates a source term which is found to be negative. In other
words, it is a term of vortical absorption of #uctuation energy. The vortical absorption
takes most of the energy created by the viscous terms, leaving a small fraction to drive the
membrane vibration. The energy imparted to the membrane vibration through the action of
the normal pressure overcomes both the normal viscous stress (2kLv/Ly) and the membrane
structural friction. The destabilising role played by #uid viscosity is con"rmed by the
variation of critical membrane tension with respect to #uid viscosity when the Reynolds
number is moderate; but at higher Reynolds numbers, the stabilising e!ect of the normal
viscous stress begins to dominate, creating a most unstable Reynolds number for a given set
of geometric con"gurations.
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